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Intel Pentium FDIV BugIntel Pentium FDIV Bug

 Try 4195835 – 4195835 / 3145727 * 3145727. Try 4195835 – 4195835 / 3145727 * 3145727. 
– In 94’ Pentium, it doesn’t return 0, but 256.In 94’ Pentium, it doesn’t return 0, but 256.

 Intel uses the SRT algorithm for floating point division. Intel uses the SRT algorithm for floating point division. 
Five entries in the lookup table are missing. Five entries in the lookup table are missing. 

 Cost: $500 millionCost: $500 million    
 Xudong Zhao’s Thesis on Word Level Model CheckingXudong Zhao’s Thesis on Word Level Model Checking



Recent Rumor: New AMD TLB Recent Rumor: New AMD TLB 
Bug??Bug??

 AMD Family 10h revision B2 processors suffer from an issue in AMD Family 10h revision B2 processors suffer from an issue in 
the processor TLBthe processor TLB ( (Translation Translation LLookaside ookaside BBufferuffer).).

 Launch date of these pLaunch date of these processorsrocessors was delayed in September, 2007. was delayed in September, 2007.

 AMD doesn’t have official announcement yet, but you can google AMD doesn’t have official announcement yet, but you can google 
“AMD B“AMD Barcelona bugarcelona bug” for plenty of discussion.” for plenty of discussion.



        Temporal Logic Model Temporal Logic Model 
CheckingChecking

 Model checking is an Model checking is an automatic verification techniqueautomatic verification technique    
for finite state concurrent systems.for finite state concurrent systems.

 Developed independently by Developed independently by Clarke and EmersonClarke and Emerson and  and 
by by Queille and SifakisQueille and Sifakis  in early 1980’s.in early 1980’s.

 SpecificationsSpecifications are written in  are written in propositional temporal propositional temporal 
logiclogic..

 Verification procedure is an Verification procedure is an exhaustive search of the exhaustive search of the 
state spacestate space of the design.   of the design.  



      Advantages of Model Advantages of Model 
CheckingChecking

 No proofs!!!No proofs!!!

 Fast  (compared to other rigorous methods such as Fast  (compared to other rigorous methods such as 
theorem proving)theorem proving)

 Diagnostic counterexamplesDiagnostic counterexamples

 No problem with partial specificationsNo problem with partial specifications

 Logics can easily express many concurrency propertiesLogics can easily express many concurrency properties



Main DisadvantageMain Disadvantage

State Explosion ProblemState Explosion Problem::

2-bit counter

0,0 0,1 1,11,0

n-bit counter has 2n states



Main Disadvantage Contd.Main Disadvantage Contd.
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Main Disadvantage Contd.Main Disadvantage Contd.

State Explosion ProblemState Explosion Problem::

Unavoidable in worst case, but steady progress over the past 27
years using clever algorithms, data structures, and engineering



Determines Patterns on Infinite Traces Determines Patterns on Infinite Traces 

Atomic PropositionsAtomic Propositions

Boolean OperationsBoolean Operations

Temporal operatorsTemporal operators

aa    “a is true now”“a is true now”
X aX a    “a is true in the ne“a is true in the neXXt state”t state”
FaFa        “a will be true in the “a will be true in the FFuture”uture”
GaGa        “a will be “a will be GGlobally true in the future”lobally true in the future”
a U ba U b        “a will hold true “a will hold true UUntil b becomes true”ntil b becomes true”

LTL - Linear Time LogicLTL - Linear Time Logic

a
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Branching TimeBranching Time



CTL: Computation Tree LogicCTL: Computation Tree Logic

EF g “g will possibly become true”



CTL: Computation Tree LogicCTL: Computation Tree Logic

AF g “g will necessarily become true”



CTL: Computation Tree LogicCTL: Computation Tree Logic

AG g “g is an invariant”



CTL: Computation Tree LogicCTL: Computation Tree Logic

EG g “g is a potential invariant”



CTL: Computation Tree LogicCTL: Computation Tree Logic

CTL uses the temporal operatorsCTL uses the temporal operators

AX, AG, AF, AUAX, AG, AF, AU

EX, EG, EF, EUEX, EG, EF, EU

CTL*CTL*  allows complex nestings such as  allows complex nestings such as

  AXX, AGX, EXF, ...AXX, AGX, EXF, ...

CTL: linear model checking algorithm !CTL: linear model checking algorithm !



    Model Checking ProblemModel Checking Problem

 Let Let MM be a  be a state-transition graphstate-transition graph..

 Let Let ƒƒ be the  be the specificationspecification in temporal logic. in temporal logic.

 Find all states Find all states ss of  of MM such that    such that   M, s |=  ƒM, s |=  ƒ..

•  CTL Model Checking:  CE 81; CES 83/86; QS 81/82.CTL Model Checking:  CE 81; CES 83/86; QS 81/82.
•  LTL Model Checking:  LP 85.LTL Model Checking:  LP 85.
•  Automata Theoretic LTL Model Checking: VW 86.Automata Theoretic LTL Model Checking: VW 86.
•  CTL* Model Checking: EL 85.CTL* Model Checking: EL 85.



State-transition graph
describes system evolving
over time. 

Model of computationModel of computation
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Microwave Oven Example



Temporal Logic and Model Temporal Logic and Model 
CheckingChecking

• The oven doesn’t The oven doesn’t heat upheat up until the  until the door is closeddoor is closed..

• NotNot  heat_upheat_up holds  holds untiluntil  door_closeddoor_closed

• ((~~  heat_upheat_up))  UU  door_closeddoor_closed



Transition System
(Automaton, Kripke structure)

Hardware Description
(VERILOG, VHDL, SMV)

Informal 
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

compilation

manualalgorithmic

verification

Model CheckingModel Checking



Hardware Example: IEEE Hardware Example: IEEE 
FuturebusFuturebus++

 In 1992 we used Model Checking to verify the In 1992 we used Model Checking to verify the IEEE IEEE 
Future+ cache coherence protocolFuture+ cache coherence protocol..

 Found a number of Found a number of previously undetected errorspreviously undetected errors in the  in the 
design.design.

 First time that formal methods were used to find First time that formal methods were used to find 
errors in an errors in an IEEE standardIEEE standard..

 Development of the protocol began in Development of the protocol began in 19881988, but , but 
previous attempts to validate it were informal.previous attempts to validate it were informal.



      Symbolic Model CheckingSymbolic Model Checking

                Burch, Clarke, McMillan, Dill, and Hwang 90;Burch, Clarke, McMillan, Dill, and Hwang 90;

                Ken McMillan’s thesis 92Ken McMillan’s thesis 92

      

The Partial Order ReductionThe Partial Order Reduction

                Valmari 90Valmari 90

                Godefroid 90 Godefroid 90 

                Peled 94Peled 94

Four Big Breakthroughs on Four Big Breakthroughs on 
State Space Explosion State Space Explosion 
Problem! Problem! 



Four Big Breakthroughs on State Four Big Breakthroughs on State 
Space Explosion Problem (Cont.)Space Explosion Problem (Cont.)

 BoundedBounded  Model CheckingModel Checking
– Biere, Cimatti, Clarke, Zhu 99Biere, Cimatti, Clarke, Zhu 99
– Using Fast SAT solversUsing Fast SAT solvers
– Can handle thousands Can handle thousands 
          of state elementsof state elements

Can the given property fail in k-steps?

I(V0) Æ T(V0,V1) Æ … Æ T(Vk-1,Vk) Æ (: P(V0) Ç…Ç: 
P(Vk))

k-steps
Property fails 
in some stepInitial state

BMC in practice: Circuit with 9510 latches, 9499 inputs
BMC formula has 4 £ 106 variables, 1.2 £ 107 clauses
Shortest bug of length 37 found in 69 seconds



Four Big Breakthroughs on Four Big Breakthroughs on 
State Space Explosion Problem State Space Explosion Problem 
(Cont.)(Cont.)
 Localization ReductionLocalization Reduction

– Bob Kurshan 1994Bob Kurshan 1994

 Counterexample Guided Abstraction Refinement (CEGAR)Counterexample Guided Abstraction Refinement (CEGAR)
– Clarke, Grumberg, Jha, Lu, Veith 2000Clarke, Grumberg, Jha, Lu, Veith 2000

– Used in most software model checkersUsed in most software model checkers  



      From Hardware to Software:From Hardware to Software:

        Natural Question: Is it possible to model check Natural Question: Is it possible to model check 
software?software?

        According to According to Wired NewsWired News on Nov 10, 2005: on Nov 10, 2005:

   “   “When Bill Gates announced that the technology When Bill Gates announced that the technology 
was under development at the 2002 Windows was under development at the 2002 Windows 
Engineering Conference, he called it the holy Engineering Conference, he called it the holy 
grail of computer sciencegrail of computer science””



Grand Challenge:Grand Challenge:
Model Check Software !Model Check Software !

What makes Software Model CheckingSoftware Model Checking 
different ?



What Makes Software Model What Makes Software Model 
Checking Different ?Checking Different ?    

 Large/unbounded base types: Large/unbounded base types: int, float, stringint, float, string
 User-defined types/classesUser-defined types/classes
 Pointers/aliasing + unbounded #’s of heap-allocated cellsPointers/aliasing + unbounded #’s of heap-allocated cells
 Procedure calls/recursion/calls through pointers/dynamic method Procedure calls/recursion/calls through pointers/dynamic method 

lookup/overloadinglookup/overloading
 Concurrency + unbounded #’s of threadsConcurrency + unbounded #’s of threads



What Makes Software Model What Makes Software Model 
Checking Different ?Checking Different ?

 Templates/generics/include filesTemplates/generics/include files
 Interrupts/exceptions/callbacksInterrupts/exceptions/callbacks
 Use of secondary storage: files, databasesUse of secondary storage: files, databases
 Absent source code for: libraries, system calls, mobile codeAbsent source code for: libraries, system calls, mobile code
 Esoteric features: continuations, self-modifying codeEsoteric features: continuations, self-modifying code
 Size (e.g., MS Word = 1.4 MLOC)Size (e.g., MS Word = 1.4 MLOC)



What Does It Mean to Model Check What Does It Mean to Model Check 
Software?Software?

1.1. Combine static analysis and model checkingCombine static analysis and model checking
          UseUse  static analysisstatic analysis  to extract ato extract a  model Kmodel K  from a boolean from a boolean 

abstraction of the program. abstraction of the program. 

          Then check that f is true in K (K Then check that f is true in K (K ²² f), where f is the  f), where f is the 
specification of the program.specification of the program.

• SLAM (Microsoft)SLAM (Microsoft)
• Bandera (Kansas State) Bandera (Kansas State) 
• MAGIC, SATABS (CMU) MAGIC, SATABS (CMU) 
• BLAST (Berkeley)BLAST (Berkeley)
• F-Soft (NEC)F-Soft (NEC)

              

                



What Does It Mean to Model Check What Does It Mean to Model Check 
Software?Software?

1.1. Simulate program along all paths in Simulate program along all paths in 
computation treecomputation tree

²² Java PathFinder (NASA Ames) Java PathFinder (NASA Ames)
²²  Source code + backtracking (e.g., Verisoft) Source code + backtracking (e.g., Verisoft) 
²²  Source code + symbolic execution + backtracking Source code + symbolic execution + backtracking 

                  (e.g., MS/Intrinsa Prefix)(e.g., MS/Intrinsa Prefix)

                
• Use finite-state machine to look for patterns Use finite-state machine to look for patterns 

in control-flow graph in control-flow graph [Engler][Engler]

                



What Does It Mean to Model Check What Does It Mean to Model Check 
Software?Software?

1.1. Design with Finite-State Software Models Design with Finite-State Software Models 
          Finite state software models can act as “missing link” Finite state software models can act as “missing link” 
          between transition graphs and complex software.between transition graphs and complex software.

²²  StatechartsStatecharts  

²²  EsterelEsterel

                



What Does It Mean to Model Check What Does It Mean to Model Check 
Software?Software?

• Use Bounded Model Checking and SAT Use Bounded Model Checking and SAT [Kroening][Kroening]

²² Problem: How to compute set of reachable states? Problem: How to compute set of reachable states?
                  Fixpoint computation is too expensive.Fixpoint computation is too expensive.

²² Restrict search to states that are reachable from initial  Restrict search to states that are reachable from initial 
                  state within state within fixed numberfixed number n of transitions n of transitions

²² Implemented by  Implemented by unwindingunwinding program and using  program and using 
                  SAT solver SAT solver 

                



Key techniques for Software Model Key techniques for Software Model 
CheckingChecking

 Counterexample Guided Abstraction RefinementCounterexample Guided Abstraction Refinement

          - Kurshan, Yuan Lu, Clarke et al JACM, Ball et al- Kurshan, Yuan Lu, Clarke et al JACM, Ball et al

            - Uses - Uses counterexamplescounterexamples to refine abstraction to refine abstraction

 Predicate AbstractionPredicate Abstraction

          - Graf and Saidi, Ball et al, Chaki et al, Kroening- Graf and Saidi, Ball et al, Chaki et al, Kroening

            - Keeps track of- Keeps track of  certain predicates on datacertain predicates on data

            --  Captures relationship between variablesCaptures relationship between variables
  



Transition System

Informal 
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Safety Property:
bad state       unreachable:

satisfied

Initial State

CounterexamplesCounterexamples

Program
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Transition System

Program
Informal 
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Initial State

Safety Property:
bad state      unreachable

CounterexamplesCounterexamples

Counterexample



Existential AbstractionExistential Abstraction

M

Mα

Given an abstraction function α : S → Sα, the concrete 
states are grouped and mapped into abstract states :

α α α Preservation Theorem ?



Preservation TheoremPreservation Theorem

• Theorem (Clarke, Grumberg, Long)Theorem (Clarke, Grumberg, Long)  If property holds on If property holds on 
abstract modelabstract model, it holds on , it holds on concrete modelconcrete model

• Technical conditionsTechnical conditions
 Property is universal i.e., no existential quantifiersProperty is universal i.e., no existential quantifiers
 Atomic formulas respect abstraction mapping Atomic formulas respect abstraction mapping 

• Converse implication is not valid !Converse implication is not valid !



Spurious BehaviorSpurious Behavior

AGAF red
“Every path necessarily leads
back to red.”

Spurious Counterexample:
<go><go><go><go> ...  

“red”

“go”

Artifact of the abstraction !



How to define Abstraction How to define Abstraction 
Functions?Functions?

Abstraction too fineAbstraction too fine
➨➨     State ExplosionState Explosion   

Abstraction too coarseAbstraction too coarse
➨➨     Information LossInformation Loss

AutomaticAutomatic  Abstraction MethodologyAbstraction Methodology



Automatic AbstractionAutomatic Abstraction

M
Original Model

Refinement

Refinement

Mα Initial AbstractionSpurious

Spurious
counterexample

Validation or
Counterexample Correct !



CEGAR CEGAR 
CCounterounterEExample-xample-GGuided uided AAbstraction bstraction 
RRefinementefinement

C
Program

InitialInitial
AbstractionAbstraction

Simulator

No errorNo error
or bug foundor bug found

PropertyProperty
holdsholds

SimulationSimulation
sucessfulsucessful

Bug foundBug found

Abstraction refinementAbstraction refinement Refinement

Model
Checker

VerificationVerification

Spurious counterexampleSpurious counterexample

CounterexampleCounterexample

Abstract 
Model



Software Example: Device Driver Software Example: Device Driver 
CodeCode

        

        Also according to Also according to Wired NewsWired News::

      

    “    “Microsoft has developed a tool called Static Device Microsoft has developed a tool called Static Device 
Verifier or SDV, that uses ‘Verifier or SDV, that uses ‘Model CheckingModel Checking’ to ’ to 
analyze the source code for Windows drivers and analyze the source code for Windows drivers and 
see if the code that the programmer wrote matches a see if the code that the programmer wrote matches a 
mathematical model of what a Windows device driver mathematical model of what a Windows device driver 
should do. If the driver doesn’t match the model, the should do. If the driver doesn’t match the model, the 
SDV warns that the driver might contain a bug.”SDV warns that the driver might contain a bug.”



Back to Hardware!Back to Hardware!

Ease of design

increases

Gate level (netlists)

Register Level

…………

System

Behavioral

Formal verification 
support



Register Level Verilog:

module counter_cell(clk, carry_in, 
                                        carry_out);
input clk;
input carry_in;
output carry_out;
reg value;
assign carry_out = value & carry_in;
initial value = 0;

always @(posedge clk) begin
// value = (value + carry_in) % 2;
        case(value)
                0: value = carry_in;
                1: if (carry_in ==0)
                        value = 1;
                else value = 0;
        endcase
end
endmodule

Gate Level (netlist):

.model counter_cell

.inputs carry_in

.outputs carry_out

.names value carry_in _n2

.def 0
1 1 1
.names _n2 carry_out$raw_n1
- =_n2
.names value$raw_n3
0
.names _n6
0
.names value _n6 _n7
.def 0
0 1 1
1 0 1
.r value$raw_n3 value
0 0
1 1
…..  (120 lines)



Lack of verification supportLack of verification support

Gate level (netlists)

Register Level

…………

System

Behavioral

use techniques
from software 
verification

Must be automatic
and scalable!!



Model Checking at the Register Model Checking at the Register 
LevelLevel

Gate level (netlists)

Register Level

…………

System

Behavioral

Model check 





Abstraction-Refinement loop Abstraction-Refinement loop 
(CEGAR)(CEGAR)

C
Program

InitialInitial
AbstractionAbstraction

Simulator

No errorNo error
or bug foundor bug found

PropertyProperty
holdsholds

SimulationSimulation
sucessfulsucessful

Bug foundBug found

Abstraction refinementAbstraction refinement Refinement

Model
Checker

VerificationVerification

Spurious counterexampleSpurious counterexample

CounterexampleCounterexample

Abstract 
Model



BenchmarksBenchmarks

 Ethernet MAC from opencores.orgEthernet MAC from opencores.org
 5000 lines of RTL Verilog5000 lines of RTL Verilog

Checked three properties:

3. Transmit module simulates 
state machine on left. (ETH0) 

4. Checks transitions out of state 
BackOff (ETH1)

5. Checks transitions out of state 
Jam (ETH2)

Defer

IPG Preamble

Data0BackOff Jam

Data1

FCS PAD

Idle

Transmit Module In Ethernet MAC
(self-loop on each state not shown)



Experimental ResultsExperimental Results

11194161359ETH2

5193127359ETH1

552144359ETH0

#Iters#PredsTime 
(sec)

LatchesBenchmark



Challenges for the FutureChallenges for the Future

 Exploiting the Power of Exploiting the Power of SATSAT, Satisfiability Modulo Theories (, Satisfiability Modulo Theories (SMTSMT))  

 Compositional Model Checking Compositional Model Checking of both Hardware and Softwareof both Hardware and Software

 Software Model CheckingSoftware Model Checking, Model Checking and , Model Checking and Static AnalysisStatic Analysis

 Verification of Embedded SystemsVerification of Embedded Systems (Timed and Hybrid Automata) (Timed and Hybrid Automata)

 Model Checking and Theorem ProvingModel Checking and Theorem Proving (PVS, STEP, SyMP, Maude) (PVS, STEP, SyMP, Maude)

 ProbabilisticProbabilistic and  and Statistical Statistical Model CheckingModel Checking

 InterpretingInterpreting Counterexamples Counterexamples

 Scaling upScaling up even more!! even more!!



My goal:My goal:
Verification of Safety-Critical Embedded Verification of Safety-Critical Embedded 

SystemsSystems

Do you trust your car?Do you trust your car?

Embedded Systems are as important in Europe as 
Computer Security is in the U.S.!
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Questions?Questions?


