Towards Autonomic Systems

Self-configuration and Self-repair

Sacha Krakowiak
Université Joseph Fourier, Grenoble
Project Sardes (LIG - INRIA)

http://sardes.inrialpes.fr/~krakowia

The challenge of complexity

® An increasing number of human activities now rely on
computing systems.
LI Communication, transportation
[0 Commerce, finance
[Energy production
[Health care, ...

= However, today’s computing systems have become so
complex that one hardly understands how they work...

= ... and one hardly understands why they fail.
[] Some investigations
[l Gray (1985, 1989)
L] Murphy (1993)
L] Oppenheimer, Ganapathi, Patterson (2003)

© 2008, S. Krakowiak CINVESTAV sep. 2008

Examples of Internet services (1)

A multistage server (e.g., electronic commerce, etc.)

web tier business tier database tier
\ Enterprise
Tomcat Java Beans MySQL

I Web request Servlet load EJB load Database
clients |5ad balancer balancer balancer load balancer
(e.g. L4 switch) (e.g. mod_jk)

© 2008, S. Krakowiak CINVESTAV sep. 2008

Examples of Internet services (2)

clients Server farm

W

—

Using a cluster (or a grid) for CPU intensive

) | computing
- | scientific computing
i | image synthesis and animation

Managing a large scale storage utility for a

Hosts set of customers

=

© 2008, S. Krakowiak CINVESTAV sep. 2008 4

The origin of failures in Internet-based systems (1)

The failure data of three Internet systems have been analyzed and compared.
Characteristics of the services:

Component failure: failure
of individual component

(H/W, network, S/W, etc.)\

Service failure: failure

visible to the end user

(unmasked component
failure)

characteristic Online ReadMostly Content
hits per day | ~100 million | ~100 million ~7 million
of ~500 > 2000 ~500
machines @ 2 sites @ 4 sites @ ~15 sites
front-end custom s/w; | custom s/w; | custom s/w;
node Solaris on open-source | open-source
architecture | SPARC, x86 OS on x86 OS on x86;
back-end Network custom s/w; custom s/w;
node Appliance open-source open-source
architecture filers OS on x86 OS on x86
period studied | 7 months 6 months 3 months
component 296 N/A 205
failures
service 40 21 56
failures

D. Oppenheimer, A. Ganapathi, D. A. Patterson. Why do Internet services fail and what can be done

about it? Proc 4th Usenix Symp. On Internet Technologies and Systems (USITS’03), 2003

The origin of failures in Internet-based systems (2)

Failure cause by % of service failures

Online Content
hardware .
unknown harf]jgg/aore unknown 2% Remlnder:

12%

22%
software A failure is a deviation from the

software 25% specified behavior

25%
A fault is any (potential) cause

of a failure
operator network net\évork
33% 20% operator 15%
ReadMostly 36%
unknown Sg‘;}""are Earlier studies:
0

14%
Tandem Systems (Gray)

In addition, most 1985: Operator 42%, S/W 25%, H/'W 18%

operator
operator faults 19% network 1989: Operator 15%, S/W 55%, H/'W 14%
are configuration 52%
faults Vax (Murphy)

1993: Operator 50%, S/W 20%, H/W 10%

D. Oppenheimer, A. Ganapathi, D. A. Patterson. Why do Internet services fail and what can be done about it?
Proc 4th Usenix Symp. On Internet Technologies and Systems (USITS’03), 2003

Another symptom of complexity

® |T spending in the 1980s
[J 75% new hardware
[25% maintaining existing systems

= [T spending in the 2000s

LI 70-80% administering (repairing and maintaining) existing
systems

© 2008, S. Krakowiak CINVESTAV sep. 2008

The challenge of system administration

® System administration is getting too complex for humans
LI One remedy: computer-assisted administration

® What is system administration?
[J Ensuring that the system provides a given level of quality of service
[] Maintaining this QoS level in the face of adverse conditions.

= Quality of service has many facets
[Availability
[Including partial availability
[I Performance
[] Mean throughput, latency, etc.
[] Differentiated levels
L] Security
L] Well-known and new threats

© 2008, S. Krakowiak CINVESTAYV sep. 2008 8

System administration tasks

® Defining policies
[1 Defining QoS evaluation criteria
LI Defining goals
L] Setting priorities

= Configuring a system)
[J Selecting components
[Choosing location for placement
0 Setting parameter values Can be (partially)

= Reacting to external events automated

[0 Hardware, software or network failure
J Load peak
[l Security attack y,

© 2008, S. Krakowiak CINVESTAV sep. 2008

Towards autonomic computing

= A concern for the industry
[l The Autonomic Computing initiative (IBM)
[l The Adaptive Enterprise (HP)
[l The Dynamic Systems initiative (Microsoft)
[l ... others

= A long term goal: self-managing (or autonomic)
systems
[l Self-configuration
[l Self-optimization
[0 Self-repair
[J Self-protection

= Complete automatic self-management will probably
not be achieved

© 2008, S. Krakowiak CINVESTAYV sep. 2008 10

Plan of this talk

® An introduction to autonomic computing
[I Concepts, techniques and frameworks
[I Architecture-based system management

m Case studies
LI The Jade framework for autonomic computing

[l Self-configuration
L] Self-repair

® A word of conclusion

© 2008, S. Krakowiak CINVESTAV sep. 2008

11

Reacting to change

= Computing systems operate in a changing environment
[J User needs (QoS)
[J Performance
L] Availability
L] Security
[l Differentiated QoS
[J Resource availability
L] Hardware
[l Software
[] Network
[J External events
] Load peak
LI Faults (hardware, software, operator)
L] Security attacks (penetration, denial of service)

= Adaptation mechanisms are the basis of autonomic computing
[J Two main approaches

© 2008, S. Krakowiak CINVESTAV sep. 2008

12

Approaches to adaptation

= Two main approaches
L] Self-awareness (control-based)

LI The system maintains a model of itself (reflection), and of its
environment

LI The system is regulated through explicit control (reasoning
and planning, based on the model)

L] Main approach in industry - also active research topic
[l Self-organization (cooperation-based)

[] The system is regulated by the cooperating behavior of its
elements

] Analogy: biological and social systems
LI Investigated in research projects (“ant colonies”, etc.)

We follow the self-awareness approach in this talk

© 2008, S. Krakowiak CINVESTAYV sep. 2008 13

Feedback control: A quick refresher

policy
reference ' /—/—\"\ controlled
value + Controlled value

- N’

® Goal of control

I To influence the behavior of a system, in order to make it conformant to (or to
reduce the discrepancy with) a prescribed scheme

[l Many examples in everyday life and industry (thermostat, automatic pilot,
chemical processes, etc.)

® Why is it difficult?
] The input to the controlled system may be unknown or unpredictable
I The controlled system may be subject to unpredictable perturbations (noise, etc)
[J The interaction with the controlled system may be imperfect
[J The controlled system may be very complex, and its behavior not completely understood

© 2008, S. Krakowiak CINVESTAV sep. 2008 14

An early example of control in computing systems

processes

Memory m

o

O O O waiting set
CPU activity
rate
n n and n are measured over the

last observation interval = (t-At,
t)

100%

Normal load

Underload |Overload

n Number of page
replacements

a) a simple model of system behavior

every At do
if (overload)
move one process from ready set to waiting set
else
if (underload and (waiting set z 0))
admit one waiting process to ready set

Preventing thrashing: the IBM
M44/44X experiments (1968)

B. Brawn, F. Gustavson. Program behavior in a
paging environment. Proc. AFIPS FJCC, pp.
1019-1032 (1968)

Execution
time
(seconds)

1200

1000

800

600

400

200

© without feedback control
X with feedback control

| | | | | Number of active

1 2 3 4 s processes

b) the effect of load limitation by admission
control

Applying control to computing systems

® What is different?

[I Large scale (large number of elements, complex interactions)
[I Behavior highly non-linear (thresholds, etc.)
[J Output variables difficult to obtain

[] QoS difficult to measure

L] Often approximated by resource utilization

= A bit of history
[In the 1970s: some attempts, limited success
[In the 1980s: networks, adaptive routing
[In the 1990s: QoS for networks, open-loop scheduling (fair share, etc.)
[

In the 2000s: Autonomic computing for Internet services, model-based
approaches

First book on the subject: Hellerstein et al., Feedback Control of Computing Systems, Wiley 2004

© 2008, S. Krakowiak CINVESTAYV sep. 2008 16

A basic framework for autonomic computing

The MAPE-K framework
(as originally proposed by IBM)

An autonomic _
element

~

/ 4 N\
" Analyze Plan controlier
\ K J
Monitor Execute
Sensor Actuator
interface interface
Sensor [™—Actuator
Managed
element

= A system is made up of autonomic elements
[1 Each element is individually controlled
L1 A form of global control is needed

© 2008, S. Krakowiak

CINVESTAV sep. 2008

17

Sensors

= What to measure?
[J Resource occupation (CPU or memory consumption, number of calls, ...)
[J End user performance (latency, throughput)
[Failure occurrence (hardware, software)
[Erratic behavior (deviations from specifications)

= Active vs passive monitor
[] Active: triggered by sensor
[J Passive: triggered by monitor active

[J Example: heartbeat vs ping for failure detection

passive

Sensor

= Raw vs synthetic
L) Probes: deliver direct measurement results
[J Gauges: analyze data delivered by probes to deliver higher level view

® | ocal vs aggregated
[0 Mining/aggregating data over a large system
[Collecting statistics
[Hierarchical organization (domains)

© 2008, S. Krakowiak CINVESTAYV sep. 2008 18

Action modes

= Using predefined knobs
[J Example: local reboot

= Controlling the load: admission control
LI A general technique for resource management
[ldea: admit additional load only if it does not overload the system. Assumes
L] reasonable estimates of current and additional load
[] reasonable capacity planning and provisioning
[J Non-intrusive

= Controlling resource usage
[] Request scheduling
[1 Resource (re)allocation and sharing
[J Assumes access to resource management

= Changing the system’s structure
[l Dynamic reconfiguration
[J Assumes some kind of modular structure

© 2008, S. Krakowiak CINVESTAV sep. 2008

19

Actuators

= Actuators for admission control
[Individually accept/reject requests
[J May involve estimated cost of rejection
] Flow throttling
[] Example: token bucket

1 tokens A token gives a right to a unit of flow (T bit/s).
Controlling variables:
O token issue rate
OOO size of bucket

incoming flow ——V ——) outgoiNg flow

® Actuators for reconfiguration
LI No accepted standard yet
LI A whole area of research
[1 A component-based organization greatly helps

© 2008, S. Krakowiak CINVESTAV sep. 2008

20

Approaches to autonomic control

= Empirical
[J Does not need detailed knowledge of the managed system
[l Often driven by “event-condition-action”

= “Black box” model
[J Assume some behavior law (e.g., linear, time-invariant, etc.)
[J Determine model parameters by identification
[] Use model to determine response, using control theory

= “Queueing” model
[l Represent system by network of queues
[J Use queueing theory to determine response
[Mainly used for performance evaluation and capacity planning

= Specific model
[] Needs detailed knowledge of the managed system
[Limited to fairly simple subsystems (e.g., task scheduling)

© 2008, S. Krakowiak CINVESTAV sep. 2008

21

What comes next ...

® The main areas of autonomic computing
[Self-protection
[Self-optimization
[l Self-configuration
[Self-repair (or self-healing)

= Some current approaches
[Architecture-based management
L] Reflective systems

= Case study

© 2008, S. Krakowiak CINVESTAV sep. 2008

22

Self-protection

= Motivation
[Protect the system against malicious attacks

= Goal
[J Prevent intrusion
[If the attack succeeded
[l Repair its effects
[] Make the system resistant to further attacks

= Problems
[] Security holes are unavoidable
[J New forms of attacks are invented continuously

[Intrusion detection is hard (and when succeeds, much damage has been
done)

[0 Human expertise needed (for the time being)

= Approaches
LI Specify “normal’” behavior
[] Define “sense of self” (biological analogy)

© 2008, S. Krakowiak CINVESTAV sep. 2008

23

Self-optimization

= Motivation
[] Respect the Service Level Agreement in a changing environment

= Goal

[1 Keep the user-perceived performance at an acceptable level, in spite of
unexpected events (peak load, resource unavailability, etc.)

[J Maintain fairness (with possibly different levels of service)
[J Optimize resource usage

= Problems

[] Measuring user-related QoS factors is difficult; complex correlation with
resource usage; sometimes contradictory goals

[J An accurate model of the system is seldom available (“black box™)
[0 The behavior of the system is highly non-linear (threshold effects, etc.)

= Approaches
[1 A general heuristic: admission control
[J Model-based or empirical feedback control

© 2008, S. Krakowiak CINVESTAV sep. 2008 24

Self-optimization: the big picture

reference
defined by SLO for QoS
defined by internal criteria for
resource usage

error

® Sensor

N actuator comparator

Notes:

the contents of the load is irrelevant; from
the control point of view, it is essentially a
“disturbance”

the contents of the response is irrelevant;
we are only interested in its QoS aspects

load
i incoming
admission control load
allowed
resour.ce [Ioad
allocation
nd
commands/” wontrolled)
system
resource
management
measured

resource usage

measured QoS ‘

factors

response

© 2008, S. Krakowiak CINVESTAY sep. 2008 25

Example: self-optimization of a web server

multi-tier server

clients

Goal

Avoid thrashing) in the presence of overload: maintain high throughput, low
response time

Desirable properties

Apply to dynamic content services (response to request is dynamically
generated)

Use non-invasive techniques (keep server unmodified)
Control user-related (instead of server-related) variables

© 2008, S. Krakowiak CINVESTAYV sep. 2008 26

Self-optimization of a web server: example 1

Consider the server as a black box with linear behavior; use identification techniques to
determine parameters; apply feedback control techniques (MIMO).

max nbr of memory
connected clients utilization

clients timeout on idle CPU
connections utilization

determine parameters by identification
(assume linear model)

This was a pioneering experiment; however, it had limitations:
B Only applied to static content (Apache web server)

A A

controller

-

v

v

design controller

B Observed parameters were server-related (not end user performance)

B | imited to linear model

(NOMS'02), Florence, April 15-19 2002

Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, D. M. Tilobury. Using MIMO Feedback Control to Enforce Policies for
Interrelated Metrics with Application to the Apache Web Server, Proc. Network Operations & Management Symp.

© 2008, S. Krakowiak CINVESTAV sep. 2008

27

Self-optimization of a web server: example 2

Gatekeeper: measurement-based
admission control at DB tier, with request
scheduling.

Needs a preliminary measurement step Elnikety, Sameh, Nahum, Erich, Tracey, John and
to determine Capacity Zwaenepoel, Willy (2004) A Method for Transparent

Admission Control and Request Scheduling in E-
Commerce Web Sites. In Proceedings International

= ‘ ' WWW Conference, New York, USA.
: Limits
Bsingle machine server
o M artificial load generation
o | HMpreliminary calibration
necessary

8] 20 40 &0 a0 100 120
Number of clients

Figure 7: Throughput (MySQL, locking in database).

© 2008, S. Krakowiak CINVESTAV sep. 2008

Self-optimization of a web server: example 3

Yaksha: admission control with adaptive
Pl feedback. The parameters of the
model are dynamically adjusted. Simple
implementation (proxy)

Contralling Response Time
180

T T T T
Hithout PI Controller ——+—
Hith FI Controller g

C=) (logscalel

I Response time vs load
I&M ﬁ&; ;ﬁﬁﬁ B ﬁ}ﬁ ﬁ H

gmgwwf W N

a Sea 1668 1568 3]s]s] 2588 3888 3588 4888 4588 Seaa
Load ¢Humber of EBs)

Abhinav Kamra, Vishal Misra, and Erich Nahum.
Yaksha: A self-tuning controller for managing the
performance of 3-tiered web sites. In International

Workshop on Quality of Service (IWQoS), Montreal,

June 2004.

Limits
B single machine server
B artificial load generation
B model needs refinement
(interaction between tiers, etc.)

© 2008, S. Krakowiak CINVESTAV sep. 2008

29

Self-optimization of a web server: other approaches

A complete queueing model for a multi-

tier service, allowing multiple servers and +——
multiple service classes. Mainly used for * l
capqc!ty plannmg an_d dynamic resource +@ ' ﬂ@—-ﬂ@—- nu
provisioning for predictable loads = savimtass s 5 swvion i
Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and c-.:, Tier 1 Tier 2 Tier 3
Tantawi, A. (2007). An Analytical Model for Multi-tier Sessions
Internet Services and its Applications. ACM Transactions
on the Web, 1(1).
A front-end “black box” for admission . o Y
. @
control to a clustered server, ensuring @ -~ auorn EE G
i i -2 il lillle e o

QoS guarant_ees for mgltlple service & “ L. ik B , ﬂ ﬂ [I
classes, again for predictable loads - @ S| | owna | | B

) . cliznts fif,f} drjp‘::j ﬂ ﬁ ﬂ
Blanquer, J. M., Batchelli, A., Schauser, K., and Wolski, - requests - -

R. (2005). Quorum: Flexible Quality of Service for Internet
Services. In Second USENIX Symp. on Networked
Systems Design and Implementation (NSDI'05), pages
159-174, Boston, Mass., USA.

© 2008, S. Krakowiak CINVESTAV sep. 2008 30

Self-(re)configuration

= Motivation
[J Configuration is a tedious, complex, error-prone process (see failure statistics)

m Goal

[Starting from a high-level description of a system’s organization, deploy and start
a working instance of the system

[J Change the structure and/or the composition of a working system, according to
specified rules
= Problems
[J How to describe the organization and constraints of the system?
[J How to translate rules into actions?
[J How to “package” the system?

= Approaches (see case study)
[Architecture-based description (possibly model-based)
[Automatic generation of tasks for a workflow engine

Note that (re)configuration is both a primary objective and an actuator for other aspects

© 2008, S. Krakowiak CINVESTAV sep. 2008

Self-repair

= Motivation
[J Maintain the system’s availability

= Goal
[J Suppress or minimize the (user perceived) effects of a failure

= Problems
[J Many failures (specially in communication) do not follow the fail-stop mode
[1 Tracing the precise location of a software failure is difficult
[J Restoring state is a complex issue

= Approaches

[Relate failure to system structure: architecture-based approach (see case
study)

[J Reduce recovery time

[] Early detection

[] Fast restoration (example: Micro-reboot, after fine-grained location)
[J Consider degraded mode operation (not all failures are fatal)

[] Performability studies (fault injection, etc.)

© 2008, S. Krakowiak CINVESTAYV sep. 2008 32

Current approaches to configuration and repair

= Model-based policies

[l Expressing management policies in terms of high-level models of
the managed systems

= Architecture-based management

LI Using the architecture of the managed system as a guide for
developing autonomic behavior

= Reflective systems

[Using reflection as a basic tool for implementing sensors and
actuators

© 2008, S. Krakowiak CINVESTAV sep. 2008 33

Architecture-based management

= System architecture
LI A framework for describing a system as an assembly of parts
L] Basic notions: component, connector, configuration

LI High-level global description: Architecture Description Languages
(ADL)

= Why architecture-based management?
[] Management notions conveniently map on architectural notions

LI Components are units of deployment, fault diagnosis and isolation,
domains of trust

LI Reconfiguration is represented by component replacement and
connector rebinding

[J Components can be equipped with standardized interfaces for sensors
and actuators

[1 Therefore components are a convenient base for managed elements

© 2008, S. Krakowiak CINVESTAV sep. 2008

34

Main concepts of system architecture

A component A connector A configuration

_________ ey
”d \\\ /
” N
A ,’ \\
/7 N\
p D
A

) g
M E !

-
“h —”
h_-——_—

A (simplistic) architecture description

component A, B, C, D, E
configuration X exports C . :
° C useSpD, E Other notions: interface, conformance, meta-data,
D uses E etc. (to be illustrated in case study)
A uses B, X
'

© 2008, S. Krakowiak CINVESTAV sep. 2008 35

Some current issues in systems architecture

®m Describing architectures (ADL)
[J No standard language currently
[J Trend: core language + extensions
[J XML-based for convenience and standardization

® Managing architectural change
L] Describing “architectural diffs”
[] Performing dynamic changes
[] Defining consistency criteria
LI Expressing change (“dynamic ADL”)
[] From expression to action

© 2008, S. Krakowiak CINVESTAV sep. 2008

36

Introducing reflection (1)

= Reflective systems
[1 A reflective system: one that maintains a representation of itself

[] The meta-level gives a concrete form to the system state
(reification)

LI This allows the system to be inspected or modified through a meta-
level interface

LI The representation needs to be causally connected to the system

= Using reflection for system management
LI The meta-level interface is a convenient interface both for sensors
(introspection) and for actuators (intercession)
= Reflective component models

LI The meta—level interface reifies architectural properties (life cycle,
connections, etc.)

© 2008, S. Krakowiak CINVESTAYV sep. 2008 37

Introducing reflection (2)

Meta-interface

I Meta-meta-level

Base interface

Meta-level

Base-level

© 2008, S. Krakowiak

CINVESTAV sep. 2008

38

Case study
Jade, an experiment in architecture-based self-management

® The Jade project

[] Developed by research team Sardes (University of Grenoble and
INRIA, 2003-2008)

LI A framework based on reflective components

Experiments in various aspects of autonomic computing
(configuration, performance, security, fault tolerance)

Targeted to medium to large size clusters for Internet services
One industrial application (with Bull)
Site: http://sardes.inrialpes.fr/jade.html

Recent publication:

[J 8. Sicard, F. Boyer, N. De Palma. Using Components for Architecture-
based Management: the Self-repair Case, Proc. International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany

LI The following presentation is mainly based on that paper
Ll Thanks to the authors

]

1 O OO O

© 2008, S. Krakowiak CINVESTAV sep. 2008

http://sardes.inrialpes.fr/jade.html

The managed system: JEE server

The application software

The hardware infrastructure

client

<

' AJP13
s L Apachie
=
i)
&
Apache
E -
3
o
E | | g PECNE
—— Apache tier Tomcat tier

CMI JDBC

OuAS

JONAS tier

JDBC Clustering

MySOL tier

network

© 2008, S. Krakowiak

CINVESTAV sep. 2008

40

Fractal, a reflective component model

®m Main features B The meta—level interface
O A general component model, allows L Attribute controller: read/modify the state
hierarchical composition and sharing variables

[Life cycle controller: start, stop

[Three sorts of interfaces: provided, T _
Binding controller: manages connections

required, and control (meta—level)

0 Components are run time structures [J Contents controller: manages included
components

[J This list is optional and extensible

O

[1 High—Ilevel architectural description
through an ADL

Control interfaces

meta-data meta-data

A composite / \ A primitive

component component
required interface provided interface

© 2008, S. Krakowiak CINVESTAV sep. 2008 41

An overview of Jade

Both the managed system and
Jade itself are organized as as
an assembly of Fractal
components.

To manage legacy systems,
one needs to wrap them into
Fractal components.

The architecture of the
managed system is described
in Fractal ADL

[Protection manager | | Common s
: [Optimization manager ;
Repair manager
IR
reactor
A

ervices

MNode
discovery

‘ Deployment \

0

Mode
allocation

Management

Managed system

Interface

5 5ensors
Ac Actuators
K: Knowledge

© 2008, S. Krakowiak

CINVESTAV sep. 2008

42

Using Fractal in Jade

® To describe the managed application
[l An assembly of components
[l Each component has a management (meta-level) interface
[Using wrappers for legacy applications

= To describe the hardware platform
[J The platform is a set of virtual nodes
LI A virtual node is a wrapped physical node
[] Provides a Fractal-style management interface
LI Virtual nodes are mapped to physical nodes
[]' Node allocation service

® To describe the Jade system
[...using Jade to manage itself
LI Example: self-repairing repair system

© 2008, S. Krakowiak CINVESTAV sep. 2008

43

The Jade deployment service

Deployment is the process of
making a system ready for use
by installing it on a platform

The system is described in a
high-level Architecture
Description Language (ADL)

%r target
platform

Deployment

Ceployment
description

engine

© 2008, S. Krakowiak

CINVESTAV sep. 2008 44

Describing a system configuration

A J2EE 3-tier application

Application Server

=

Tomcat

Web Server

Database Server

Application Server

Tomcat

- ==== <|-- MYSQL ->
<--TOI' <!-- >
<!l-- === <component name="mysql"

<compc definition="fr.jade.resource.j2ee.mysqgl.MysqglResourceType">

defin <attributes>

<attr <attribute name="resourceName" value="mysql" />
< <attribute name="dirLocal" value="/tmp/j2ee" />
< <attribute name="user" value="jlegrand" />

< </attributes>
< <virtual-node name="node1" />
</att

<packages>
<virti <package name="MySq|l (linux x86)" />
<pac <package name="MySql Wrapper" />

<| </packages>
<f </component>

</pa <!-- -->
</compt <!-- BINDINGS ->
<compc <!-- -->
defin <binding client="apache.worker1" server="tomcat1.resource" />

<attr <binding client="apache.worker2" server="tomcat2.resource" />
< <binding client="tomcat1.jdbc" server="mysql.resource" />
< <binding client="tomcat2.jdbc" server="mysql.resource" />

< <virtual-node name="node1" />
< </definition>

</att

<virtl

<pac ___

<package name="Tomcat (linux x86)" />
<package name="Tomcat Wrapper" />
</packages>
</component><!--

© 2008, S. Krakowiak

CINVESTAV sep. 2008

Practical aspects of deployment (1)

® Re-engineering a legacy system in component form
[I Technique: wrapping parts of the system into Fractal components
[0 Example: a J2EE server (JOnAS, an open-source implementation)

= Packaging the components for deployment

[J A package is a unit of independent deployment

[In Jade, we use the OSGi standard (“bundles™)
L] Independent units of execution
[J Run-time isolation (for reconfiguration)
] Possible coexistence of multiple versions

[J Two kinds of bundles
[Component bundles (contain implementation + needed Java services)
LI Interface bundles (contain Java interfaces needed for binding)

(] This allows removing direct inter-component dependencies (they only
depend on interfaces)

© 2008, S. Krakowiak CINVESTAV sep. 2008

46

Practical aspects of deployment (2)

= [Implementing the deployment engine
[J Extract information on target machine
[J For each component:
[l find component’s code and package identifier

[] Call Generic Factory on target machine
A Generic Factory calls Installer
A Installer downloads package from repository
A Installer asks LoaderFactory to create loader for the package
A Generic Factory uses loader to create an instance of component

L] Configure component through control interface
[l Set bindings between components

[] Use ADL description

[] Call binding controllers
[l Start configuration

L] Call lifecycle controllers

© 2008, S. Krakowiak CINVESTAV sep. 2008

47

Dynamic reconfiguration (1)

Examples
Dynamic reconfiguration is the
process of changing the binding controller:
configuration of a deployed add/remove a binding
system, at run time
content controller: create a lifecycle controller:
contained component start/stop the component
Reconfiguration is one actuator \ /

used by autonomic systems

Reconfiguration is done

through the meta-operations of —l
components; a reconfiguration

script may be generated from a

dynamic ADL program

© 2008, S. Krakowiak CINVESTAYV sep. 2008 48

Dynamic reconfiguration (2)

Objective: change an application’s configuration (e.g., replacing some components) without
stopping the application

Method:
temporarily suspend the execution of the modified part
do the modification
resume execution

Problems:
limit the extent of the suspended part
preserve consistency
... subject of ongoing research

Implementation:
Use the Li f eCycl eCont rol | er Fractal interface
Methods
st opFc: suspend execution of activities within (composite) component
st art Fc: resume the execution suspended by st opFc
get FcSt at e: know the current execution state of the component

© 2008, S. Krakowiak CINVESTAYV sep. 2008 49

The Jade self-repair service

= Assumptions

[0 The managed system runs on a cluster of nodes (with a pool of
free nodes)

[In this version, only node failures (fail-stop) are considered
LI Software failures are being investigated

= Objectives
[] To provide self-repair for the managed system
[1 To provide self-repair for the self-repair service (self-self-repair)

repair repair

service

managed

element

managed

element

© 2008, S. Krakowiak CINVESTAV sep. 2008

50

Self-repair principles

= Repair policy

[Identify failed components and get their
architectural state

[1 Substitute failed components by new ones and

restore their architectural state architectural
[] Architectural state: the state captured in the state
meta-data

managed
element

repair
service

managed
element

© 2008, S. Krakowiak CINVESTAYV sep. 2008 51

Checkpointing architectural state (1)

meta-data
= The meta-data of failed components are checkpoint
lost (e.g., connections, etc.) 4)
self-repair restore
® The system provides meta-data architectural
checkpointing IS state
9 ME2 y

ME1 meta-data meta-data

ma ed
element

managed
element

meta-data

repair

N ME1 (repaired)
. 1
service

meta-data

managed
element

© 2008, S. Krakowiak CINVESTAYV sep. 2008 52

Checkpointing architectural state (2)

Lo A B
=y

<l /
c° 5@, No business

Vo &6®

ﬁef zﬁf\éﬁ code o=
/ <— [/ |/ ;

No business No business CheCkpomt

code A 2 code Iayer

S i
No business
o

N e
O
@ T [C_A B
- - = —_———— ——
[/ /]

Application
> / layer

Meta-data
Business code

© 2008, S. Krakowiak CINVESTAV sep. 2008 53

Failure analysis

f

'
- //
f

Checkpoint
layer

7

/-~ Architectural

/!
/

"DV
/o — / Application

Failed components are identified by comparing the current state of the layer with the
checkpointed state
The current state is maintained using usual failure detection techniques (heartbeat)

© 2008, S. Krakowiak CINVESTAYV sep. 2008 54

Making the self-repair system robust (1)

= Bases of self-repair
L] Reflective components

LI Architectural state checkpointing
[J Failure detection

® The self-repair system itself is a single point of failure...

= Self-self-repair
LI The same algorithm is applied recursively

LI This is possible since the self-repair system is structured in reflective
components

LI Recursion stops at this level (no self-self-self repair...)

© 2008, S. Krakowiak CINVESTAV sep. 2008 55

Making the self-repair system robust (2)

= Apply the repair algorithm on the components of self-

repair system

® Conceptual view Repair
service
® |Implementation view Repair
service

Self control

|
|

= Mutual control of replicas

L] Similar to classical process pairs (Tandem, etc.)
L] Each replica works as a component

Repair
service

]

Mutual control

© 2008, S. Krakowiak CINVESTAV sep. 2008

56

Putting it all together

CP(\“CW‘ e
& P o d
e

The managed application
The self-repair service and the checkpoint layer
Self-self repair

© 2008, S. Krakowiak CINVESTAV sep. 2008

57

A case study: J2EE application server

= Motivations for this example
LI A “real life” system with non-trivial architectural complexity
[Combines different legacy middleware technologies
[] Used as a test bed for research results

Web tier Business tier Database tier

— ™ — = — ™

Web Server £ Data Base Server

P g —

Tomcat]

Managed Elements

Managed System

© 2008, S. Krakowiak CINVESTAV sep. 2008

Managing legacy applications (1)

Management f A g ;,f
Operation 2 Tomicat o
TN = S
/W o <= god g / Application
/ Apachie MySOL /
/ f;" layer
// < Lpp - /)
,ff Tomecal /’
A Wranser o
/ T /
a"r . 4 /fr
Legacy f{;‘ Tormcal 4
Configuration 4 =) / Legacy
Update A e - S / E
/ e - 7 ayer
> / Avache R %
N — . (Musac.
/ B _'_'__'_,_,_.-—'—""f_ /
4 e %}) - 4
f / <; e /f
y y

© 2008, S. Krakowiak CINVESTAV sep. 2008 59

Managing legacy applications (2)

public Interface LifeCycleltf {
/** Starts the component to which this interface belongs. */
public void startFc() ;

[** Stops the component to which this interface belongs. */
public void stopFc() ;

Wrapper

Public class ApacheWrapperlmpl implements LifeCycleController, ... {

public void startFc () throws JadeException {
ShellCommand.syncExec(dirlnstall + "/bin/httpd -f " + dirLocal+ "/conf/httpd.conf");

}

public void stopFc() throws JadeException {
BufferedReader br = new BufferedReader(new FileReader(dirLocal + "/logs/httpd.pid"));
String pid = br.readLine();
ShellCommand.asyncExec("kill -TERM " + pid);

}

© 2008, S. Krakowiak CINVESTAV sep. 2008 60

The repair algorithm

Repair Service Checkpoint

Introspect

Tomcat
Web Server Database Server

Application Server
%

Tomcat

© 2008, S. Krakowiak CINVESTAYV sep. 2008 61

Experimental results

nb. failed req. 1900 nb. failed req. 18700
MTTR 13 s MTTR 464 s
Availlability 0.96 Availlability (.72
B N T e — - T S e
ar — iR RUBIS workload on
a Linux cluster, 1 GB
" A RAM/node, 100Mb
Ethernet
2
L] i |]
E
a | L | “-:Iq L L T -] E] L | T.'L) b 1

Automatic recovery

Recovery managed by a skilled operator

Automatic Manual
Throughput 12 req./s 12 req./s
Resp. time 89 ms 87 ms
Mem. usage 20,1% 17.5%

© 2008, S. Krakowiak

CINVESTAV sep. 2008

62

Conclusion on Jade

= A case for architecture-base autonomic computing
[J Main construct: reflective components

= |dentifying needed properties for self-repair
LI Run time abstractions
LI Attributes, interfaces, lifecycle state, binding, containment
[l Operations
[] Specializable meta-operation (addSubComponent, bind, etc.)
[1 Checkpointing and replication

= Actual applications
[l J2EE server, JMS message server

® Current limitations

LI Only node failures are considered (not software faults)
[Work in progress...

© 2008, S. Krakowiak CINVESTAV sep. 2008

63

Some challenges of autonomic computing (1)

= Optimization aspects
[J Models, planning, learning
[J Managing conflicts
[0 Scalability

® Technical aspects
[] Standards for management interfaces
[l Specific function-related aspects (configuration, repair, etc.)

= Utility functions
[J Setting objectives
[J Measuring progress
[J Negotiation
[J Economic analogy

® |nterfacing with humans
[l Defining and expressing high-level policies
[0 Handling emergencies

© 2008, S. Krakowiak CINVESTAV sep. 2008

64

Some challenges of autonomic computing (2)

= Monitoring and analysis
[] Standards for monitored data
[1 Collection
[l Representation
[Interpreting data
L] Correlation between low-level and high level metrics
[l Locating problems
[l Fine-grain localization of software failures
[0 Remedying problems
L] Micro-reboot techniques
[] Learning by fault-injection/repair action

® Configuration issues
[J How to define a “correct” configuration?
L] Identifying “good” configurations
[l Inferring constraints

© 2008, S. Krakowiak CINVESTAV sep. 2008

65

Two (mostly unsolved) problems

® From local to global control

[J Problems
LI Locally optimal # globally optimal
L] Conflict resolution
[J Solutions
L] Super-controller?
L] Collaboration?

= From policy to mechanisms
[J How to express policy?
[l High-level goals
[J How to translate policy into action rules?
[] What about learning?

manager

managed
element

a

manager

managed
element

a

manager

managed

element

[policy

v

manager

managed
element

© 2008, S. Krakowiak CINVESTAV sep. 2008

66

Towards autonomic computing

= A recently established research area

LI New journals, conferences and workshops

L] International Conference on Autonomic Computing (ICAC),
IEEE, since 2004

[ACM Transactions on Autonomous and Adaptive Systems
(TAAS), since 2006

L] ... many others

® An important effort in the industry
LI Autonomic features increasingly present in working applications

= A number of challenges ahead

© 2008, S. Krakowiak CINVESTAYV sep. 2008 67

